<u>Nom</u> :	Devoir maison n°3	<u>Note</u> :
<u>Classe</u> : TS5	Etude de fonctions	/ 10
<i><u>A préparer pour le</u></i> : 19 / 12 /18		

	Avis de l'élève		Avis du professeur	
Je sais:	Oui	Non	Oui	Non
Justifier qu'une équation admet une unique solution dans IR.				
Utiliser la calculatrice pour déterminer un encadrement à l'unité d'une solution d'équation.				
Appliquer pas à pas l'algorithme de dichotomie.				
Conjecturer et justifier la valeur exacte d'une solution.				
Déterminer les limites d'une fonction aux bornes de son ensemble de définition.				
Justifier les asymptotes horizontales / verticales éventuelles.				
Dériver.				
Etudier le signe d'une fonction. Dresser et justifier le tableau de variations d'une fonction.				
Déterminer l'équation d'une tangente.				
Déterminer un point d'intersection. Justifier son appartenance à une droite.				
Construire / Représenter graphiquement une portion de courbe.				

Exercice 1:

- 1. Justifier que l'équation $x^3 x^2 + \frac{1}{3}x \frac{1}{27} = 0$ admet une unique solution réelle α .
- 2. En utilisant la calculatrice, déterminer un encadrement de α à l'unité près.
- 3. Appliquer l'algorithme de dichotomie à la main pour déterminer un encadrement de α à 10^{-2} près.
- 4. Conjecturer la valeur exacte de α puis justifier ce résultat.

Exercice 2:

On considère la fonction f définie sur]0; $1[\cup]1$; $+\infty[par:$

$$f(x) = \frac{10(x-8)}{x(x-1)}.$$

On désigne par \mathscr{C} sa courbe représentative relative à un repère orthogonal $(O; \vec{i}, \vec{j})$.

- **1.** a. Déterminer les limites de f en 0 et en $+\infty$.
- **b.** Déterminer la limite de *f* quand *x* tend vers 1 par valeurs inférieures puis par valeurs supérieures.
- c. En déduire les asymptotes à la courbe \mathscr{C} .
- 2. a. Déterminer la dérivée f' de la fonction f.
- **b.** Montrer que f'(x) s'annule pour $\alpha = 8 + 2\sqrt{14}$ et pour $\beta = 8 2\sqrt{14}$.
- c. Dresser le tableau de variation de f.
- **3.** Soit *I* le point de la courbe \mathscr{C} d'abscisse $\frac{1}{2}$.
- a. Déterminer une équation de la droite Δ tangente en l à la courbe $\mathscr C$.
- **b.** Montrer que le point L, intersection de la courbe avec son asymptote horizontale, appartient à la droite Δ .
- c. Représenter la partie de la courbe \mathscr{C} pour les valeurs de x strictement supérieures à 1 (unité graphique : 1 cm en abscisse et 3 cm en ordonnée).