$\frac{\text{Nom}:}{\text{Classe}: 2^{\text{nde}} 5} : \frac{\text{DS n}^{\circ}1}{\text{le } 27/09/2022} : \frac{\text{Note}:}{\dots/20}$

La calculatrice est interdite.

Cours	: Compléter les extraits du cours suivants / 4
1.	On dit de deux ensembles ou sous-ensembles qu'ils sont quand ils n'ont aucun élément commun. C'est par exemple le cas de l'ensemble $\mathbb Q$ des nombres
2.	Soient a et b deux entiers relatifs.
	a) Le quotient q et le reste r de la division euclidienne de a par b sont les entiers relatifs tels que : avec $\leq r <$
	b) Lorsque $r = 0$ on dit que b est un de a .
3.	 Soit a un entier relatif. a est pair si et seulement s'il existe un entier relatif q tel que a est impair si et seulement s'il existe un entier relatif q tel que
4.	Un nombre premier est un entier naturel qui
5.	Soit x un nombre décimal non nul. Son écriture scientifique est de la forme \pm où \pm est le signe, a est un nombre appelé la mantisse tel que et l'exposant n est un entier

... / 20

Classe: 2^{nde} 5 le 27/09/2022

	Avis du professeur	
Compétences évaluées :		Bien maîtrisée
Connaitre le cours (vocabulaire, définitions, propriétés, remarques et exemples)		—
S'approprier les exercices / les méthodes travaillé(e)s en classe.		—
Compétences du livret scolaire :		
(C1) Mener une recherche de façon autonome.	Non év	aluée
• (C2) Modéliser, faire une simulation, valider ou invalider un modèle.	Non évaluée	
• (C3) Représenter, choisir un cadre, changer de registre.	Non évaluée	
• (C4) Calculer, appliquer des techniques, mettre en œuvre des algorithmes.		—
• (C5) Raisonner, argumenter en exerçant un regard critique, démontrer.		—
• (C6) Communiquer à l'écrit en utilisant un langage rigoureux et des outils pertinents.	-	—
• (C7) Communiquer à l'oral en utilisant un langage rigoureux et des outils pertinents.	Non év	aluée

Pour la suite de ce devoir, la calculatrice ne sera autorisée que les 10 dernières minutes.

Exercices contrôlés : (Questions traitées et corrigées en classe)

.../6

- 1. Les affirmations suivantes sont-elles vraies ou fausses? Justifier.
 - a) 0, 45 est un nombre rationnel.
- b) $\frac{33}{12}$ est un nombre décimal.

c) $\sqrt{5} = 2.2$

- d) 53 est un nombre premier.
- 2. Quel est le plus grand multiple de 7 strictement inférieur à 6 706 ?
- 3. Démontrer que le carré d'un nombre impair est un nombre impair.
- 4. Ecrire les expressions suivantes sous la forme a^n avec a un nombre réel et n un entier relatif.

$$A = \frac{2^3}{2^{-2}}$$
 $B = (-7)^3 \times (-7)^{-5}$ $C = \frac{(3^4)^7}{2^{28} \times 5^{28}}$

5. Donner l'écriture scientifique des nombres suivants :

$$A = 0,00654$$
 $B = 345,32 \times 10^5.$

Exercice 2: Calculer.

.../5

$$A = 1 - \frac{-3}{4} - \frac{2}{3}$$

$$\mathbf{B} = \frac{7}{5} - \frac{7}{5} \times \frac{15}{42}$$

$$C = \frac{2 + \frac{3}{4}}{5}$$

$$A = 1 - \frac{-3}{4} - \frac{2}{3} \qquad B = \frac{7}{5} - \frac{7}{5} \times \frac{15}{42} \qquad C = \frac{2 + \frac{3}{4}}{5} \qquad D = \frac{7^3 \times 2^4 \times 3^5}{2^6 \times 7^2 \times 3^2}$$

Exercice 3 : Démontrer.

... / 2

Démontrer que le résultat de la somme de deux nombres impairs est toujours un nombre pair.

.../3 Exercice 4:

Pour déterminer l'écriture fractionnaire exacte d'un nombre rationnel x présenté sous forme décimale arrondie on utilise la méthode suivante :

- 1. On détermine la période n de sa partie décimale.
- 2. On calcule le résultat de $10^n \times x x$
- 3. En factorisant l'expression $10^n \times x x$ on en déduit l'écriture fractionnaire de x.

Par exemple, pour $x \approx 4,3333333...$:

- On remarque qu'une série d'un seul chiffre se répète à l'infini dans la partie décimale. La période est donc n=1.
- On calcule $10^1 \times x x = 10 \times 4,333333... = 43,333333... = 43,333333... = 39$
- En factorisant $10^1 \times x x$ on en déduit successivement :

$$10x - x = 39 \iff (10 - 1)x = 39 \iff 9x = 39 \iff x = \frac{39}{9} = \frac{13}{3}$$

Appliquer cette méthode pour déterminer l'écriture fractionnaire exacte des nombres suivants :

a)
$$x \approx 1,242424...$$
 b) $x \approx 1,002002...$

Correction du DS n°1

Cours: Cf. chapitre #1

Exercices contrôlés : Voir la correction des exercices indiqués ci-dessous.

1. a) p40 n°38

b) p37 n°6

c) p37 n°6

d) p37 n°5

2. p38 n°21

3. Propriété démontrée dans le cours.

4. p41 n°48

5. p41 n°49

Exercice 2 : Calculer.

$$\begin{aligned} \mathbf{A} &= 1 - \frac{-3}{4} - \frac{2}{3} = \frac{12}{12} + \frac{9}{12} - \frac{8}{12} = \frac{12 + 9 - 8}{12} = \frac{13}{12} \\ \mathbf{B} &= \frac{7}{5} - \frac{7}{5} \times \frac{15}{42} = \frac{7}{5} - \frac{7 \times 3 \times 5}{5 \times 7 \times 6} = \frac{7}{5} - \frac{3}{6} = \frac{7}{5} - \frac{1}{2} = \frac{14}{10} - \frac{5}{10} = \frac{9}{10} \\ \mathbf{C} &= \frac{2 + \frac{3}{4}}{5} = \frac{\frac{8}{4} + \frac{3}{4}}{5} = \frac{11}{4} \div 5 = \frac{11}{4} \times \frac{1}{5} = \frac{11}{20} \\ \mathbf{D} &= \frac{7^3 \times 2^4 \times 3^5}{2^6 \times 7^2 \times 3^2} = 7^{3 - 2} \times 2^{4 - 6} \times 3^{5 - 2} = 7^1 \times 2^{-2} \times 3^3 = \frac{7 \times 3^3}{2^2} = \frac{7 \times 27}{4} = \frac{189}{4} \end{aligned}$$

Exercice 3: Démontrer.

Démontrer que le résultat de la somme de deux nombres impairs est toujours un nombre pair.

Soient a et b deux nombres impairs.

Il existe deux entiers relatifs q et q' tels que a = 2q + 1 et b = 2q' + 1.

Dans ce cas : a + b = 2q + 1 + 2q' + 1 = 2q + 2q' + 2 = 2(q + q' + 1) = 2q'' en posant q'' = q + q' + 1Or $q'' = q + q' + 1 \in \mathbb{Z}$ donc a + b est pair.

Exercice 4:

Pour déterminer l'écriture fractionnaire exacte d'un nombre rationnel x présenté sous forme décimale arrondie on utilise la méthode suivante :

- 1. On détermine la période n de sa partie décimale.
- 2. On calcule le résultat de $10^n \times x x$
- 3. En factorisant l'expression $10^n \times x x$ on en déduit l'écriture fractionnaire de x.

Par exemple, pour $x \approx 4,3333333...$:

- On remarque qu'une série d'un seul chiffre se répète à l'infini dans la partie décimale. La période est donc n=1.
- On calcule $10^1 \times x x = 10 \times 4,333333... 4,333333... = 43,333333... 4,333333... = 39$
- En factorisant $10^1 \times x x$ on en déduit successivement :

$$10x - x = 39 \iff (10 - 1)x = 39 \iff 9x = 39 \iff x = \frac{39}{9} = \frac{13}{3}$$

Appliquer cette méthode pour déterminer l'écriture fractionnaire exacte des nombres suivants :

a)
$$x \approx 1,242424...$$

On remarque que la période vaut 2.
 $10^2 \times x - x = 100 \times 1,242424... - 1,242424...$
 $10^2 \times x - x = 124,242424... - 1,242424... = 123$
On en déduit : $100x - x = 123$
 $99x = 123$
 $x = \frac{123}{99} = \frac{41}{33}$

b)
$$x \approx 1,002\,002...$$

On remarque que la période vaut 3.

$$10^3 \times x - x = 1000 \times 1,002002... - 1,002002...$$

 $1000x - x = 1002,002002... - 1,002002... = 1001$

On en déduit :
$$1000x - x = 1001$$

 $999x = 1001$
 $x = \frac{1001}{999}$