Note :

Classe: Tle ES – Spé Maths

	Avis de l'élève		Avis du professeur	
Compétences évaluées	Oui	Non	Oui	Non
Organiser des données dans des matrices.				
Résoudre un problème en utilisant le calcul matriciel.				
Mettre un problème en équations.				
Donner l'écriture matricielle d'un système.				
Résoudre un système en utilisant le calcul matriciel.				
Utiliser la calculatrice.				
Justifier qu'une matrice carrée d'ordre 2 est inversible.				
Déterminer, à la main, une matrice inverse.				

Exercice 1 : Pour la rentrée scolaire de sa fille, Jean doit acheter de nouvelles fournitures :

... / 3,5

- 3 cahiers 24×32 ,
- 1 gomme,
- 5 tubes de colle,
- 2 paquets de 50 pochettes transparentes.

Jean a le choix entre 3 supermarchés situés près de chez lui. Il a relevé et inscrit les prix unitaires des articles dans le tableau suivant :

		1		
Supermarché 1	2,5€	0,85€	6,95€	0,45€
Supermarché 2	2,25€	0,75€	7,35€	0,55€
Supermarché 3	2,6 €	0,95€	7,5 €	0,6 €

- 1. Organiser les prix et les quantités dans deux matrices P et Q.
- 2. En utilisant le calcul matriciel, calculer le montant que Jean devra régler dans chaque supermarché. Quel supermarché peut-on lui conseiller de choisir ?

<u>Exercice 2</u>: ... / 6,5

Un constructeur de planches de surf fabrique 3 modèles. La conception de chaque modèle nécessite le passage par 3 postes de travail. Le tableau 1 indique le nombre d'heures nécessaires par modèle et par postes pour réaliser les planches. Le tableau 2 indique le coût horaire par poste de travail.

Tableau 1	Poste 1	Poste 2	Poste 3	Tableau 2	
Modèle 1	8h	10h	14h	Poste 1	25€/h
Modèle 2	6h	6h	10h	Poste 2	20 €/h
Modèle 3	12h	10h	18h	Poste 3	15€/h

On pose:
$$H = \begin{pmatrix} 8 & 10 & 14 \\ 6 & 6 & 10 \\ 12 & 10 & 18 \end{pmatrix}$$
 et $C = \begin{pmatrix} 25 \\ 20 \\ 15 \end{pmatrix}$

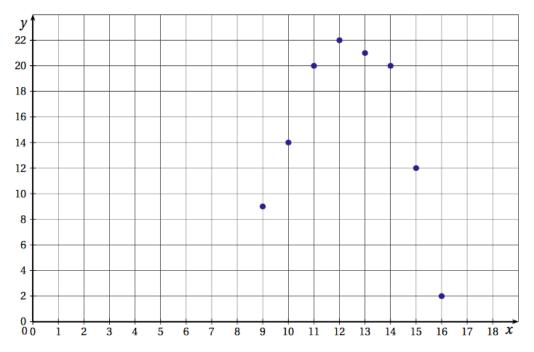
- 1. Calculer et donner une interprétation des coefficients de la matrice $P = H \times C$.
- 2. Après une étude de marché, le fabriquant souhaite que les prix de revient soient les suivants :

Modèle 1 : 574 € Modèle 2 : 396 € Modèle 3 : 726 €

Il cherche à déterminer les nouveaux coûts horaires par poste, notés a, b et c, permettant d'obtenir ces prix de revient.

- a) Montrer que les réels a, b et c doivent être solutions du système H $\times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 574 \\ 396 \\ 726 \end{pmatrix}$
- b) Déterminer la matrice inverse de H à l'aide de la calculatrice.
- c) En déduire le calcul des réels a, b et c. Interpréter les résultats trouvés.

Afin d'améliorer la qualité de ses services, un parc d'attraction a fait une étude statistique sur la durée moyenne d'attente en minutes à sa billetterie, en fonction de l'heure. La billetterie est ouverte de 9h à 16h. On obtient le relevé suivant :



Ainsi, à 10 h, il y avait 14 minutes d'attente à la billetterie.

On souhaite modéliser cette durée d'attente par une fonction qui à l'heure associe la durée d'attente en minutes. Ainsi, il sera possible d'avoir une estimation de la durée d'attente. On choisit de modéliser cette situation à l'aide de la fonction f définie par $f(x) = ax^2 + bx + c$ avec a, b, c des réels et a non nul telle que les trois points A (9; 9), B (11; 20) et C (16; 2) appartiennent à la représentation graphique de f.

- 1. Justifier que les réels a,b et c sont solutions du système $\begin{cases} 81a+9b+c=9\\ 121a+11b+c=20.\\ 256a+16b+c=2 \end{cases}$
- 2. Utiliser le calcul matriciel pour déterminer les réels a, b et c. En déduire l'expression de f(x).
- 3. D'après ce modèle, déterminer sur quelle(s) plage(s) horaire(s) l'attente peut être inférieure à 10 min.

Exercise 4: On donne A =
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$
 ... / 4

Justifier que A est inversible puis calculer, à la main, la matrice inverse A⁻¹.

Correction du test n°3

Exercice 1 : Pour la rentrée scolaire de sa fille, Jean doit acheter de nouvelles fournitures :

- 3 cahiers 24×32 ,
- 1 gomme,
- 5 tubes de colle,
- 2 paquets de 50 pochettes transparentes.

Jean a le choix entre 3 supermarchés situés près de chez lui. Il a relevé et inscrit les prix unitaires des articles dans le tableau suivant :

		1		
Supermarché 1	2,5€	0,85€	6,95€	0,45€
Supermarché 2	2,25 €	0,75€	7,35€	0,55€
Supermarché 3	2,6 €	0,95€	7,5€	0,6€

1. On organise les prix et les quantités dans les matrices P et Q de sorte à faire correspondre, dans le bon ordre, les prix aux quantités de cahiers, de tubes de colle, de pochettes transparentes et de gommes.

Si on pose :
$$P = \begin{pmatrix} 2, 5 & 0, 85 & 6, 95 & 0, 45 \\ 2, 25 & 0, 75 & 7, 35 & 0, 55 \\ 2, 6 & 0, 95 & 7, 5 & 0, 6 \end{pmatrix}$$
, il faut poser : $Q = \begin{pmatrix} 3 \\ 5 \\ 2 \\ 1 \end{pmatrix}$

2. En utilisant le calcul matriciel, calculer le montant que Jean devra régler dans chaque supermarché. Quel supermarché peut-on lui conseiller de choisir ?

Quel supermarché peut-on lui conseiller de choisir ?
$$P \times Q = \begin{pmatrix} 2,5 & 0,85 & 6,95 & 0,45 \\ 2,25 & 0,75 & 7,35 & 0,55 \\ 2,6 & 0,95 & 7,5 & 0,6 \end{pmatrix} \times \begin{pmatrix} 3 \\ 5 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2,5 \times 3 + 0,85 \times 5 + 6,95 \times 2 + 0,45 \times 1 \\ 2,25 \times 3 + 0,75 \times 5 + 7,35 \times 2 + 0,55 \times 1 \\ 2,6 \times 3 + 0,95 \times 5 + 7,5 \times 2 + 0,6 \times 1 \end{pmatrix}$$

$$P \times Q = \begin{pmatrix} 26,1 \\ 25,75 \\ 28,15 \end{pmatrix}$$

$$P \times Q = \begin{pmatrix} 26, 1 \\ 25, 75 \\ 28, 15 \end{pmatrix}$$

Cela signifie que le montant des courses de Jean serait de 26,10 € au supermarché n°1, 25,75 € au n°2 et 28,15 € au n°3. On peut-lui conseiller d'aller au supermarché n°2 où il paiera moins cher.

Exercice 2:

Un constructeur de planches de surf fabrique 3 modèles. La conception de chaque modèle nécessite le passage par 3 postes de travail. Le tableau 1 indique le nombre d'heures nécessaires par modèle et par postes pour réaliser les planches. Le tableau 2 indique le coût horaire par poste de travail.

Tableau 1	Poste 1	Poste 2	Poste 3	Tableau 2	
Modèle 1	8h	10h	14h	Poste 1	25€/h
Modèle 2	6h	6h	10h	Poste 2	20 €/h
Modèle 3	12h	10h	18h	Poste 3	15€/h

On pose:
$$H = \begin{pmatrix} 8 & 10 & 14 \\ 6 & 6 & 10 \\ 12 & 10 & 18 \end{pmatrix}$$
 et $C = \begin{pmatrix} 25 \\ 20 \\ 15 \end{pmatrix}$

1.
$$P = H \times C = \begin{pmatrix} 8 & 10 & 14 \\ 6 & 6 & 10 \\ 12 & 10 & 18 \end{pmatrix} \times \begin{pmatrix} 25 \\ 20 \\ 15 \end{pmatrix} = \begin{pmatrix} 8 \times 25 + 10 \times 20 + 14 \times 15 \\ 6 \times 25 + 6 \times 20 + 10 \times 15 \\ 12 \times 25 + 10 \times 20 + 18 \times 15 \end{pmatrix} = \begin{pmatrix} 610 \\ 420 \\ 770 \end{pmatrix}$$

Cela signifie qu'à la production, le modèle 1 coûte 610 € tandis que le modèle 2 coûte 420 € et le modèle 3 coûte 770 €.

2. Après une étude de marché, le fabriquant souhaite que les prix de revient soient les suivants :

Il cherche à déterminer les nouveaux coûts horaires par poste, notés a, b et c, permettant d'obtenir ces prix de revient.

a) Soient a, b et c les coûts horaires par poste pour fabriquer les modèles 1, 2 et 3 pour des montants respectifs de 574 €, 396 € et 726 €. On sait, d'après le tableau 1, le nombre d'heures par poste, nécessaires à la fabrication de chaque modèle de planche. Ainsi a, b et c sont solutions du système :

$$\begin{cases} 8a + 10b + 14c = 574 \\ 6a + 6b + 10c = 396 \\ 12a + 10b + 18c = 726 \end{cases}$$

Ce système peut s'écrire sous forme matricielle : $\begin{pmatrix} 8 & 10 & 14 \\ 6 & 6 & 10 \\ 12 & 10 & 18 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 574 \\ 396 \\ 726 \end{pmatrix}$

C'est à dire sous la forme : H × $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 574 \\ 396 \\ 726 \end{pmatrix}$ b) La calculatrice permet de déterminer : H⁻¹ = $\begin{pmatrix} \frac{1}{2} & \frac{-5}{2} & 1 \\ \frac{3}{4} & \frac{-3}{2} & \frac{1}{4} \\ -3 & 5 & \frac{-3}{2} \end{pmatrix}$

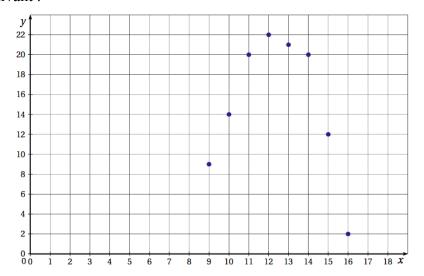
c) H ×
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 = $\begin{pmatrix} 574 \\ 396 \\ 726 \end{pmatrix}$ \iff $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ = H⁻¹ × $\begin{pmatrix} 574 \\ 396 \\ 726 \end{pmatrix}$

En utilisant la calculatrice on obtient : $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 23 \\ 18 \\ 15 \end{pmatrix}$

Cela signifie que pour obtenir les prix souhaités sur chaque modèle de planche de surf, les nouveaux coûts horaires sur chaque poste doivent passer à 23 €/h pour le poste n°1, à 18 €/h pour le poste n°2 et à 15 €/h pour le poste n°3.

Exercice 3 : Adapté du sujet de bac Métropole – La Réunion du 14 septembre 2016.

Afin d'améliorer la qualité de ses services, un parc d'attraction a fait une étude statistique sur la durée moyenne d'attente en minutes à sa billetterie, en fonction de l'heure. La billetterie est ouverte de 9h à 16h. On obtient le relevé suivant :



Ainsi, à 10 h, il y avait 14 minutes d'attente à la billetterie.

On souhaite modéliser cette durée d'attente par une fonction qui à l'heure associe la durée d'attente en minutes. Ainsi, il sera possible d'avoir une estimation de la durée d'attente. On choisit de modéliser cette situation à l'aide de la fonction f définie par $f(x) = ax^2 + bx + c$ avec a, b, c des réels et a non nul telle que les trois points A (9; 9), B (11; 20) et C (16; 2) appartiennent à la représentation graphique de f.

1. A
$$(9; 9) \in \mathcal{C}f$$
 donc : $f(9) = 9$
 $a \times 9^2 + b \times 9 + c = 9$
 $81a + 9b + c = 9$

B (11; 20)
$$\in \mathscr{C}f$$
 donc: $f(11) = 20$
 $a \times 11^2 + b \times 11 + c = 20$
 $121a + 11b + c = 20$

C (16; 2)
$$\in$$
 Cf donc: $f(16) = 2$
 $a \times 16^2 + b \times 16 + c = 2$
 $256a + 16b + c = 2$

 $a \times 16^{2} + b \times 16 + c = 2$ 256a + 16b + c = 2Finalement, les réels a, b et c sont solutions du système $\begin{cases} 81a + 9b + c = 9 \\ 121a + 11b + c = 20. \\ 256a + 16b + c = 2 \end{cases}$

2.
$$\begin{cases} 81a + 9b + c = 9 \\ 121a + 11b + c = 20 \\ 256a + 16b + c = 2 \end{cases} \Leftrightarrow \begin{pmatrix} 81 & 9 & 1 \\ 121 & 11 & 1 \\ 256 & 16 & 1 \end{pmatrix} \times \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 9 \\ 20 \\ 2 \end{pmatrix} \Leftrightarrow A \times X = B$$

$$avec : A = \begin{pmatrix} 81 & 9 & 1 \\ 121 & 11 & 1 \\ 256 & 16 & 1 \end{pmatrix}, X = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ et } B = \begin{pmatrix} 9 \\ 20 \\ 2 \end{pmatrix}.$$

$$\text{La calculatrice permet d'obtenir}: A^{-1} = \begin{pmatrix} \frac{1}{14} & \frac{-1}{10} & \frac{1}{35} \\ \frac{-27}{14} & \frac{5}{2} & \frac{-4}{7} \\ \frac{88}{7} & \frac{-72}{5} & \frac{99}{35} \end{pmatrix} \text{puis } X = \begin{pmatrix} \frac{-13}{10} \\ \frac{63}{2} \\ \frac{-846}{5} \end{pmatrix}$$

On en déduit :
$$f(x) = \frac{-13}{10}x^2 + \frac{63}{2}x - \frac{846}{5}$$
 soit : $f(x) = -1.3x^2 + 31.5x - 169.2$

3. Pour déterminer sur quelle(s) plage(s) horaire(s) l'attente peut être inférieure à 10 min il faut résoudre f(x) < 10

$$-1.3x^2 + 31.5x - 169.2 < 10$$

$$-1.3x^2 + 31.5x - 179.2 < 0$$

$$\Delta = b^2 - 4ac = 31, 5^2 - 4 \times (-1, 3) \times (-179, 2) = 60,41 > 0$$

Le trinôme admet 2 racines distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-31,5 - \sqrt{60,41}}{-2,6} \approx 15,1 \text{ et } x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-31,5 + \sqrt{60,41}}{-2,6} \approx 9,1$$

Le trinôme est du signe contraire de a = -1.3 entre les racines. De plus, on rappelle que la billetterie du parc est ouverte entre 9 h et 16 h. On en déduit le tableau de signe suivant :

x	9		x_2		x_1	16
$-1.3x^2 + 31.5x - 179.2$		_	O	+	Ó	_

$$9,1 = 9 + \frac{1}{10}$$
 donc $9,1 h = 9 h 06 min$ De même : 15,1 h = 15 h 06 min

Ainsi, d'après ce modèle, l'attente à la billetterie du parc peut-être inférieure à 10 min entre 9 h et 9 h 06 min du matin puis entre 15 h 06 min et 16 h de l'après-midi.

Exercice 4: On donne A =
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

Justifier que A est inversible puis calculer, à la main, la matrice inverse A⁻¹.

On a:
$$2 \times 5 - 4 \times 3 = 10 - 12 = -2 \neq 0$$

Donc la matrice A est inversible.

On pose :
$$X = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $B = \begin{pmatrix} a \\ b \end{pmatrix}$
 $A \times X = B \iff \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

$$\begin{cases} 2x + 3y = a \\ 4x + 5y = b \end{cases} \Leftrightarrow \begin{cases} 4x + 6y = 2a \\ 4x + 5y = b \end{cases}$$

Par soustraction de la ligne 2 à la ligne 1 on obtient :

$$\begin{cases} 4x + 6y = 2a \\ y = 2a - b \end{cases}$$

$$D'où: \left\{ \begin{array}{l} 4x + 6(2a - b) = 2a \\ y = 2a - b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 4x + 12a - 6b = 2a \\ y = 2a - b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 4x = -10a + 6b \\ y = 2a - b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = -2, 5a + 1, 5b \\ y = 2a - b \end{array} \right.$$

On en déduit, sous forme matricielle :
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2, 5 & 1, 5 \\ 2 & -1 \end{pmatrix} \times \begin{pmatrix} a \\ b \end{pmatrix}$$

Or, on sait que : A × X = B \Leftrightarrow X = A⁻¹ × B

Or, on sait que :
$$A \times X = B \iff X = A^{-1} \times B$$

Et on vient de prouver :
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \iff \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2, 5 & 1, 5 \\ 2 & -1 \end{pmatrix} \times \begin{pmatrix} a \\ b \end{pmatrix}$$

On en déduit :
$$A^{-1} = \begin{pmatrix} -2, 5 & 1, 5 \\ 2 & -1 \end{pmatrix}$$