Nom :

Classe: 2^{nde} 2

Test n°5 BIS

le 08/01/2019

Note : .../5

	Avis de l'élève		Avis du professeur	
Compétences évaluées	Oui	Non	Oui	Non
Développer				
Calculer				
Justifier qu'une expression est de signe constant sur IR				
Justifier qu'une fonction admet un extremum sur ${\mathbb R}$ et préciser cet extremum.				

Exercice 1:

- 1. f est la fonction définie sur \mathbb{R} par $f(x) = 2x^2 + 8x + 7$.
 - a) Justifier que, quel que soit le réel x, on a : $f(x) = 2(x+2)^2 1$.
 - b) Calculer f(-2).
 - c) Justifier que f(x) f(-2) est de signe constant sur \mathbb{R} .
 - d) En déduire que la fonction f admet un extremum (à préciser). En quelle valeur de x est-il atteint?
- 2. g est la fonction définie par $g(x) = -\frac{1}{4}x^2 + \frac{1}{2}x + 2$
 - a) Justifier que, quel que soit le réel x, on a $g(x) = -\frac{1}{4}(x-1)^2 + \frac{9}{4}$.
 - b) Démontrer que g admet un extremum. Préciser sa valeur et le réel x en lequel il est atteint.

Correction du Test n°5

Exercice 1:

1. f est la fonction définie sur \mathbb{R} par $f(x) = 2x^2 + 8x + 7$.

a) Justifier que, quel que soit le réel x, on a : $f(x) = 2(x+2)^2 - 1$.

$$\forall x \in \mathbb{R}, \\ A = 2(x+2)^2 - 1 \\ A = 2(x^2 + 2 \times x \times 2 + 2^2) - 1 \\ A = 2(x^2 + 4x + 4) - 1$$

 $A = 2x^2 + 8x + 8 - 1 = 2x^2 + 8x + 7 = f(x)$

b) Calculer f(-2).

$$f(-2) = 2(-2+2)^2 - 1 = 2 \times 0^2 - 1 = -1$$

c) Justifier que f(x) - f(-2) est de signe constant sur \mathbb{R} .

$$\forall x \in \mathbb{R},$$
 $f(x) - f(-2) = 2(x+2)^2 - 1 - (-1) = 2(x+2)^2 - 1 + 1 = 2(x+2)^2$ Or $2 > 0$ et un carré est toujours positif ou nul donc : $\forall x \in \mathbb{R}, f(x) - f(-2) \ge 0$

d) En déduire que la fonction f admet un extremum (à préciser). En quelle valeur de x est-il atteint?

$$\forall x \in \mathbb{R}, f(x) - f(-2) \ge 0$$

On en déduit : $f(x) \ge f(-2)$ c'est-à-dire $f(x) \ge -1$

Ainsi, la fonction f admet pour minimum -1. Ce minimum est atteint en x = -2.

2. g est la fonction définie par $g(x) = -\frac{1}{4}x^2 + \frac{1}{2}x + 2$ a) Justifier que, quel que soit le réel x, on a $g(x) = -\frac{1}{4}(x-1)^2 + \frac{9}{4}$.

$$\forall x \in \mathbb{R}, \\ A = -\frac{1}{4}(x-1)^2 + \frac{9}{4} \\ A = -\frac{1}{4}(x^2 - 2 \times x \times 1 + 1^2) + \frac{9}{4} \\ A = -\frac{1}{4}(x^2 - 2x + 1) + \frac{9}{4} \\ A = -\frac{1}{4}x^2 + \frac{1}{4} \times 2x - \frac{1}{4} \times 1 + \frac{9}{4} \\ A = -\frac{1}{4}x^2 + \frac{2}{4}x - \frac{1}{4} + \frac{9}{4} = -\frac{1}{4}x^2 + \frac{1}{2}x + \frac{8}{4} = -\frac{1}{4}x^2 + \frac{1}{2}x + 2 = g(x)$$

b) Démontrer que g admet un extremum. Préciser sa valeur et le réel x en lequel il est atteint.

$$\begin{split} g(1) &= -\frac{1}{4}(1-1)^2 + \frac{9}{4} = -\frac{1}{4} \times 0^2 + \frac{9}{4} = \frac{9}{4} \\ \forall \ x \in \mathbb{R}, \ g(x) - g(1) = -\frac{1}{4}(x-1)^2 + \frac{9}{4} - \frac{9}{4} = -\frac{1}{4}(x-1)^2 \end{split}$$

Or, un carré est toujours positif ou nul mais $-\frac{1}{4} < 0$.

Donc: $\forall x \in \mathbb{R}, g(x) - g(1) \le 0$

On en déduit : $g(x) \le g(1)$ c'est-à-dire $g(x) \le \frac{9}{4}$

Ainsi, la fonction g admet pour maximum $\frac{9}{4}$. Ce maximum est atteint en x = 1.